Funded by the Horizon 2020 Framework Programme
of the European Union

Neurophotonics & Mechanical Systems Biology

member since 2017

Understanding the role of cell mechanical properties for physiology and disease.

Our main research goal is to understand the importance cell mechanical properties for health and disease on the molecular and systems level.
Mechanical forces are ubiquitous signals that provide information about our environments and our own body during touch and as we walk, breathe, and fall in love. Although failures to sense and cope with mechanical forces are linked to human diseases including peripheral neuropathies and neurodegenerative disorders, little is known about the connections between biomechanics and disease. One reason for this gap is the technical challenge of detecting forces and the deformations resulting from them within a living cell or organism. To fill this gap and advance our understanding, we develop and deploy new optogenetic tools (FRET, synthetic biology and genetic code expansion) to measure how changes in protein and cell mechanics contribute to pathological transformations in mechanosensation and -protection.

We use the small round worm Caenorhabditis elegans with its compact nervous system consisting of only 302 neurons as a model due to its experimental tractability and exploit microfluidic and nanotechnological tools to apply precise forces to single cells or animals while simultaneously visualizing mechanical forces and their consequences using optogenetic stress sensors and state-of-the-art microscopy.

Start Lab in 2017

ICFO, Barcelona
Mediterranean Technology Park, Castelldefels
Ave. Carl Friedrich Gauss, 3
Spain


ICFO, Barcelona
Mediterranean Technology Park, Castelldefels
Ave. Carl Friedrich Gauss, 3
Spain